
# Nachweis Gleiten (GEO-2) BJÖRNSEN BERAIENDE INCENIEURE Auftraggeber: Stadt Marburg Projekt: Grüner Wehr - Marburg BEICH Projekt: MAR191661 Seite Nachweis Gleiten (GEO-2) Berechnungsblatt MAR191661 Bericht Standsicherheitsnachweis Grüner Wehr Anhang: Anlage 8 BCE Projekt-Nr.: MAR191661 Seite 1 von 4

## Systemskizze und Formeln



# Anwendungshinweis/Anmerkung

Nachweis der Sicherheit gegen Gleiten (aus Schneider Bautabellen S. 11.49)

$$T_d \le R_{t,d} + E_{pt,d}$$
  
 $R_d = V_{k'} * \tan(\delta_{s,k}) / \gamma_{R,h}$ 

$$R_d = (V_k^{'} * \tan(\varphi'_k) + A * c'_k) / \gamma_{R,h}$$

Bemessungswert des passiven Erddrucks parallel zur

$$E_{pt,d}=E_{pt,k}/\gamma_{R,e}$$

$$mit E_{pt,k} = \gamma * h^2 * K_{pgh} * 0.5$$

Einwirkungen Unterwasser

Bemessungswert der parallel zur Schnittfläche angreifenden Kräfte in Verschiebungsrichtung

Bearbeitung

Dipl.-Ing. Th. Riemke

$$T_d = T_k * \gamma_{G,k}$$

Einwirkungen Oberwasser

Datum: 29.05.2020

|         | Eingabe                                          |                  |             |                                    |
|---------|--------------------------------------------------|------------------|-------------|------------------------------------|
|         |                                                  |                  | Eingabefeld | Anwendungshinweis/Anmerkung        |
|         | Bemessungssituation                              |                  | BS-T        |                                    |
|         | Teilsicherheitsbeiwert für ständige Einwirkungen | γg               | 1,35        | [-] DIN 1054                       |
|         | Teilsicherheitsbeiwert für Erdruhedruck          | γg,e0            |             | [-] DIN 1054                       |
|         | Teilsicherheitsbeiwert für Gleitwiderstand       | $\gamma_{R,h}$   | 1,10        | [-] DIN 1054                       |
|         | Wichte Wasser                                    | γw               | 10,0        | [kN/m³]                            |
|         | Durchfluss                                       | Q                | 101,0       | [m³/s] HQ1                         |
|         | Oberwasserstand                                  | OW               | 179,21      | [m.NN]                             |
|         | Unterwasserstand                                 | UW               | 176,04      | [m.NN]                             |
|         | Geländehöhen Wehrsohle                           | H <sub>1</sub>   | 177,62      | [m.NN] angewendet für Querprofil 6 |
|         |                                                  | $H_2$            | 175,73      | [m.NN]                             |
| O       |                                                  | H <sub>3</sub>   |             | [m.NN] hier nicht vorhanden        |
| Eingabe |                                                  | $H_4$            | 175,73      | [m.NN]                             |
| ng      |                                                  | H <sub>5</sub>   | 175,73      | [m.NN]                             |
| Ш       |                                                  | H <sub>6</sub>   | 175,73      | [m.NN]                             |
|         |                                                  | H <sub>7</sub>   | 175,73      | [m.NN]                             |
|         |                                                  | H <sub>8</sub>   | 175,73      | [m.NN]                             |
|         |                                                  | H <sub>9</sub>   | 175,73      | [m.NN]                             |
|         |                                                  | H <sub>10</sub>  |             | [m.NN] hier nicht vorhanden        |
|         |                                                  | H <sub>11</sub>  | 175,73      | [m.NN]                             |
|         | Längen Wehrsohle                                 | L <sub>1</sub>   | 2,20        | [m]<br>                            |
|         |                                                  | L <sub>2</sub>   | 5,80        | [m]<br>                            |
|         |                                                  | L <sub>3</sub>   | 0,00        | [m]<br>                            |
|         |                                                  | L <sub>4</sub>   | 0,00        | [m]<br>                            |
|         |                                                  | L <sub>5</sub>   | 0,00        | [m]<br>                            |
|         |                                                  | L <sub>6</sub>   | 0,00        | [m]<br>                            |
|         |                                                  | L <sub>ges</sub> | 8,00        | [m]                                |
|         |                                                  |                  |             |                                    |
| 1       |                                                  |                  |             |                                    |

Berechnungsblatt Erstellt: GS, 04.12.2019; Geprüft: xxx

|                                                            | BCE<br>Björnsen Beratende Ingenieure            |                            |                           | eis Gleite<br>Grüner W | ehr                       |                                     |                        | Berechnungsblatt<br>MAR191661                                          |
|------------------------------------------------------------|-------------------------------------------------|----------------------------|---------------------------|------------------------|---------------------------|-------------------------------------|------------------------|------------------------------------------------------------------------|
| Auftraggeber: Stadt Marburg Projekt: Grüner Wehr - Marburg |                                                 |                            |                           | Beri                   |                           | Bericht Standsicherhe<br>Anlage 8   | eitsnachweis           | Grüner Wehr                                                            |
|                                                            | BCE Projekt-Nr.: MAR191661                      | ibuig                      |                           |                        | Seite                     | Arriage o 2                         |                        | von 4                                                                  |
|                                                            | Stabiliaiaranda atëndiga                        | Cinquirlange               | n C Ei                    | applant                |                           |                                     |                        |                                                                        |
|                                                            | Stabilisierende ständige                        | Einwirkunge                | en G <sub>stb</sub> - Eig | geniast                |                           |                                     |                        | _                                                                      |
| Nr.                                                        | Bauteil                                         | L<br>[m]                   | B<br>[m]                  | A<br>[m²]              |                           | γ <sub>B</sub><br>[kN/m³]           | Kraft<br>[kN/m]        | Anmerkung                                                              |
| 1                                                          | Deckwerksteine Sandstein                        |                            | . ,                       | 4,10                   |                           | 26,0                                | 106,6                  |                                                                        |
| 2                                                          | Betonüberdeckung                                |                            |                           | 0,00                   |                           | 24,0                                | -                      |                                                                        |
| 3                                                          | Kieskern                                        |                            |                           | 10,80                  |                           | 19,0                                | 205,2                  |                                                                        |
| <u>4</u><br>5                                              |                                                 |                            |                           |                        |                           |                                     | -                      |                                                                        |
| 6                                                          |                                                 |                            |                           |                        |                           |                                     | -                      |                                                                        |
|                                                            |                                                 |                            |                           |                        |                           | Summe:                              | 311,8                  |                                                                        |
|                                                            | Zusätzliche Widerstände                         |                            |                           | A <sub>stb</sub>       |                           |                                     |                        |                                                                        |
| ۱r.                                                        | Bauteil                                         |                            | Abmessungen<br>B          | А                      |                           | Kräfte                              | Kraft                  | Anmerkung                                                              |
| NI.                                                        | Bautell                                         | [m]                        | [m]                       | [m²]                   |                           | γ<br>[kN/m³]                        | [kN/m]                 | Annerkung                                                              |
| 1                                                          | Auflast Wasser OW                               |                            | . ,                       | 10,56                  |                           | 10,0                                | 105,6                  |                                                                        |
| 2                                                          | Auflast Wasser UW                               |                            |                           | 6,74                   |                           | 10,0                                | 67,4                   |                                                                        |
| 3                                                          | Kiesablagerungen OW                             |                            |                           | 0,00                   |                           | 19,0                                | -                      | ungünstig als geräumt angenommer                                       |
| <u>4</u><br>5                                              |                                                 | +                          |                           |                        |                           |                                     | -                      |                                                                        |
| J                                                          |                                                 |                            |                           |                        |                           | Summe:                              | 173,0                  |                                                                        |
|                                                            | Destabilisierende ständi                        | <mark>ae Einwirku</mark> r | ngen G <sub>det</sub> -   | Sohlenwa               | sserdruck                 |                                     |                        | -                                                                      |
|                                                            |                                                 |                            | Abmessungen               | ſ                      |                           | Kräfte                              |                        | _                                                                      |
| Nr.                                                        | Bauteil                                         | x<br>[m]                   | Hws<br>[m]                | A<br>[m²]              | Teilsbeiwert $\gamma$ [-] | γ <sub>W</sub><br>[kN/m³]           | Kraft<br>[kN/m]        | Anmerkung                                                              |
| Ţ                                                          | Augusta Tallanda                                | 0,00                       | 3,48                      | 7.05                   | 4.05                      | 10.0                                | 20.0                   | x beschreibt den horizontalen Abstand vo<br>oberwasserseitigem Wehrfuß |
| 1                                                          | Auftrieb Teilfläche 1                           | 2,20                       | 3,20                      | 7,35                   | 1,35                      | 10,0                                | 99,2                   | oberwasserseitigem vveniruis                                           |
| 2                                                          | Auftrieb Teilfläche 2                           | 2,20                       | 0,20                      | 14,76                  | 1,35                      | 10,0                                | 199,3                  |                                                                        |
| 3                                                          | Auftrieb Teilfläche 3                           | 8,00                       | 1,89                      | 0,00                   | 1 25                      | 10,0                                |                        |                                                                        |
| S                                                          | Admiles remache 3                               |                            |                           | 0,00                   | 1,35                      | 10,0                                | -                      | Hws beschreibt die anstehende                                          |
| 4                                                          | Auftrieb Teilfläche 4                           |                            |                           |                        |                           |                                     | -                      | Wassersäule bezogen auf definierte Punk<br>der Wehrsohle               |
| 5                                                          | Auftrieb Teilfläche 5                           |                            |                           |                        |                           |                                     | -                      | dei Weilisonie                                                         |
| J                                                          | Admines reinfaction                             |                            |                           |                        |                           |                                     | -                      |                                                                        |
| 6                                                          | Auftrieb Teilfläche 6                           |                            |                           |                        |                           |                                     | -                      |                                                                        |
|                                                            |                                                 |                            |                           |                        |                           |                                     |                        |                                                                        |
|                                                            | Verlustbeiwert                                  | ξ                          | 1                         |                        | '                         | Summe:                              | 298,5                  |                                                                        |
|                                                            | Destabilisierende veränd                        | lerliche Einw              | /irkungen (               | Q <sub>dst</sub>       |                           |                                     |                        |                                                                        |
|                                                            |                                                 |                            | Abmessungen               |                        |                           | Kräfte                              |                        |                                                                        |
| ۷r.                                                        | Bauteil                                         | [m]                        | B<br>[m]                  | A<br>[m²]              |                           | γ <sub>w</sub>                      | Kraft                  | Anmerkung                                                              |
| 1                                                          |                                                 | [m]                        | [m]                       | fiii 1                 |                           | [kN/m³]                             | [kN/m]<br>-            |                                                                        |
| 2                                                          |                                                 |                            |                           |                        |                           |                                     | -                      |                                                                        |
| 3                                                          |                                                 |                            |                           |                        |                           |                                     | -                      |                                                                        |
| 4                                                          |                                                 |                            |                           |                        |                           |                                     | -                      |                                                                        |
| 5                                                          |                                                 | ]                          |                           | I                      |                           | Summe:                              | -                      |                                                                        |
|                                                            | Firmida CI                                      | F-1                        | d = 1 =                   |                        |                           | Summe:                              |                        | <u> </u>                                                               |
|                                                            | Einwirkungen Oberwass                           | Dicke                      | Reibungs-                 | d<br>Wichte unter      | Erddruck-                 | Toile believed                      |                        |                                                                        |
| ۱r.                                                        | Bodenart                                        | Bodenschicht               | winkel                    | Auftrieb               | beiwert                   | Teilsbeiwert $\gamma$ [-]           | Kraft<br>[kN/m]        | Anmerkung                                                              |
|                                                            | 16                                              | [m]                        | φ[°]                      | $\gamma'$ [kN/m³]      | K <sub>0gh</sub> [-]      |                                     |                        | sighe Anyondungshirumis 2 for Dallium                                  |
| 1                                                          | Kies                                            | 1,89                       | 35                        | 11                     | 0,4264                    | 1,20<br>1,20                        | 10,1                   | siehe Anwendungshinweis 3 für Reibungswink                             |
| 2                                                          |                                                 | 0                          |                           |                        |                           | 1,20                                | -                      |                                                                        |
|                                                            |                                                 |                            |                           |                        |                           | 1,20                                | -                      | siehe Anwendungshinweis 4 für Erddruckbeiwe                            |
| 3<br>4                                                     |                                                 |                            |                           |                        |                           | 1,20                                | -                      |                                                                        |
| 3<br>4                                                     |                                                 |                            |                           |                        |                           | Summe                               | 10,1                   |                                                                        |
| 3<br>4                                                     |                                                 |                            |                           |                        |                           |                                     |                        |                                                                        |
| 3<br>4                                                     | Einwirkungen Oberwass                           |                            |                           |                        | 1                         |                                     |                        | I                                                                      |
| 3<br>4<br>5                                                |                                                 | H <sub>sw</sub>            | γw                        |                        | Kraft<br>[kN/m]           | Teilsbeiwert                        | Kraft<br>[kN/m]        | Anmerkung                                                              |
| 3<br>4<br>5                                                |                                                 | H <sub>SW</sub><br>[mWS]   | γw<br>[kN/m³]             |                        | [kN/m]                    | Teilsbeiwert $\gamma$ [-]           | [kN/m]                 | Anmerkung                                                              |
| 3<br>4<br>5<br>Vr.                                         |                                                 | H <sub>sw</sub>            | γw                        |                        | [kN/m]<br>60,6            | Teilsbeiwert $\gamma$ [-] 1,35      | [kN/m]<br>81,7         | Anmerkung siehe Anwendungshinweis 6 zur Berechnung c                   |
| 3<br>4<br>5<br>Vr.                                         | hydrostatischer Druck                           | H <sub>SW</sub><br>[mWS]   | γw<br>[kN/m³]             |                        | [kN/m]                    | Teilsbeiwert $\gamma$ [-] 1,35 1,35 | [kN/m]<br>81,7<br>10,3 | -                                                                      |
| 3<br>4<br>5<br>Vr.                                         | hydrostatischer Druck<br>hydrodynamischer Druck | H <sub>SW</sub><br>[mWS]   | γw<br>[kN/m³]             |                        | [kN/m]<br>60,6            | Teilsbeiwert $\gamma$ [-] 1,35      | [kN/m]<br>81,7         | siehe Anwendungshinweis 6 zur Berechnung o                             |
| 2<br>3<br>4<br>5                                           | hydrostatischer Druck<br>hydrodynamischer Druck | H <sub>SW</sub><br>[mWS]   | γw<br>[kN/m³]             | Berechnungsb           | [kN/m]<br>60,6<br>7,60    | Teilsbeiwert $\gamma$ [-] 1,35 1,35 | [kN/m]<br>81,7<br>10,3 | siehe Anwendungshinweis 6 zur Berechnung o                             |

|                             |                                                                                                                                            |                          |                                |                              | n (GEO-2                       | 2)                        | Berechnungsblatt |                                                                                                               |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|------------------------------|--------------------------------|---------------------------|------------------|---------------------------------------------------------------------------------------------------------------|--|
|                             | BJÖRNSEN BERATENDE INGENIEURE                                                                                                              | (                        | Grüner W                       |                              |                                | MAR191661                 |                  |                                                                                                               |  |
| Auftraggeber: Stadt Marburg |                                                                                                                                            |                          |                                | Beri                         | cht/Dokument:                  | Bericht Standsicherhe     | itsnachweis      | Grüner Wehr                                                                                                   |  |
|                             | Projekt: Grüner Wehr - Mar<br>BCE Projekt-Nr.: MAR191661                                                                                   | rburg                    |                                |                              | Aniage:<br>Seite               | Anlage 8                  |                  | von 4                                                                                                         |  |
|                             | •                                                                                                                                          |                          |                                |                              |                                | <u> </u>                  |                  | 1000                                                                                                          |  |
| Nr.                         | Einwirkungen Unterwass  Bodenart                                                                                                           | Dicke<br>Bodenschicht    | Reibungs-<br>winkel            | Wichte unter<br>Auftrieb     | Erddruck-<br>beiwert           | Teilsbeiwert $\gamma$ [-] | Kraft<br>[kN/m]  | Anmerkung                                                                                                     |  |
| 1                           | Wasserbausteine                                                                                                                            | [m]<br>1,0               | φ [°]<br>35                    | γ΄ [kN/m³]<br>16             | K <sub>0gh</sub> [-]<br>0,4264 | 1,10                      | 3,1              | siehe Anwendungshinweis 3 für Reibungswinke                                                                   |  |
| 3                           |                                                                                                                                            |                          |                                |                              |                                | 1,10<br>1,10              | -                | siehe Anwendungshinweis 4 für Erddruckbeiwer                                                                  |  |
| 4<br>5                      |                                                                                                                                            |                          |                                |                              |                                | 1,10<br>1,10              | -                |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                | Summe:                    | 3,1              | _                                                                                                             |  |
|                             | Einwirkungen Unterwass                                                                                                                     | ser - Wasser             | drücke                         |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            | H <sub>WS</sub><br>[mWS] | γ̄w<br>[kN/m³]                 |                              |                                | Teilsbeiwert $\gamma$ [-] | Kraft<br>[kN/m]  | Anmerkung                                                                                                     |  |
|                             | hydrostatischer Druck                                                                                                                      | 1,89                     | 10,0                           |                              |                                | 1,00                      | 17,9             | _                                                                                                             |  |
| 2                           |                                                                                                                                            |                          |                                |                              |                                | 1,00                      | -                |                                                                                                               |  |
|                             | Bemessungswert - Gleitv                                                                                                                    | widerstand F             | ₹ <sub>d</sub>                 |                              |                                |                           |                  |                                                                                                               |  |
|                             | -                                                                                                                                          | Reibungs-                | Sohlreibungs-                  | IZ de Walter                 |                                | Taila baiwart             |                  |                                                                                                               |  |
|                             |                                                                                                                                            | winkel $\varphi$ [°]     | winkel<br>∂ <sub>s,k</sub> [°] | Kohäsion<br>c <sub>k</sub> ′ | A<br>[m²]                      | Teilsbeiwert $\gamma$ [-] | Kraft<br>[kN/m]  | Anmerkung                                                                                                     |  |
|                             | Fall 1                                                                                                                                     | 35                       | 35                             | 0                            | 0                              | 1,10                      | 118,6            | $R_d = V_k' * \tan(\delta_{s,k}) / \gamma_{R,h}$                                                              |  |
|                             | Fall 2                                                                                                                                     |                          |                                |                              |                                | ·                         |                  | $R_d = (V_k^{'} * \tan(\varphi'_k) + A * c'_k)/\gamma_{R,h}$<br>siehe Anwendungshinweis 5 zur Differenzierung |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  | der Fälle 1 und 2                                                                                             |  |
|                             | Nachweis                                                                                                                                   |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          | .,                             | 400.0                        | l                              |                           |                  | Anmerkung                                                                                                     |  |
|                             | Charakteristische ve<br>Bemessungswer                                                                                                      | rt Gleitwiderstand       | $V_k$ $R_d$                    | 186,3<br>118,6               | [kN/m]<br>[kN/m]               |                           |                  | $V_k=G_{stb} + A_{stb} - G_{dst} - Q_{dst}$                                                                   |  |
| <u>n</u>                    | Bemessungswert stabilisierende Einwirkungen UW E <sub>d</sub> +W <sub>d</sub> Bemessungswert parallel angreifende Kräfte OW T <sub>d</sub> |                          |                                | 21,0                         | [kN/m]                         |                           |                  | Erdruhedruck & Wasserdruck im UW                                                                              |  |
| Nacnweis                    | Bemessungswert parallel angre                                                                                                              | eifende Kräfte OW        | $T_d$                          | 102,1                        | [kN/m]<br>[kN/m]               |                           |                  | Erdruhedruck & Wasserdrücke im OV                                                                             |  |
| Nac                         |                                                                                                                                            |                          |                                |                              | [kN/m]                         | •                         |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          | T <sub>d</sub><br>102,1        | ≤<br>≤                       | $R_d + E_d + W_d$ $139,6$      |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                | erfüllt                      |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              | •                              |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |
|                             |                                                                                                                                            |                          |                                |                              |                                |                           |                  |                                                                                                               |  |

| <b>BCE</b> Nac                |      | eis Gleiten (GEO-2 |           | Berechnungsblatt<br>MAR191661 |                        |           |   |  |
|-------------------------------|------|--------------------|-----------|-------------------------------|------------------------|-----------|---|--|
| BJÖRNSEN BERATENDE INGENIEURE | · ·  | Früner Wehr        |           |                               |                        | WAKTSTOOT |   |  |
| Auftraggeber: Stadt Marburg   |      | Bericht/Dokument:  | Bericht S | Standsiche                    | heitsnachweis Grüner V | Vehr      |   |  |
| Projekt: Grüner Wehr - Mart   | ourg | Anlage:            | Anlage 8  | }                             |                        |           |   |  |
| BCE Projekt-Nr.: MAR191661    |      | Seite              |           | 4                             |                        | von       | 4 |  |

#### **Tabellen**

| Widerstand                                                                      | Formelzeichen    | Bemessungssituation |      |      |  |  |  |  |
|---------------------------------------------------------------------------------|------------------|---------------------|------|------|--|--|--|--|
| Widerstalld                                                                     | 1 officeizeichen | BS-P                | BS-T | BS-A |  |  |  |  |
| STR und GEO-2: Grenzzustand des Versagens von Bauwerken, Bauteilen und Baugrund |                  |                     |      |      |  |  |  |  |
| Bodenwiderstände                                                                |                  |                     |      |      |  |  |  |  |
| <ul> <li>Erdwiderstand und Grundbruchwiderstand</li> </ul>                      | ⁄/R,e, //R,ν     | 1,40                | 1,30 | 1,20 |  |  |  |  |
| — Gleitwiderstand                                                               | ⁄⁄R,h            | 1,10                | 1,10 | 1,10 |  |  |  |  |

#### Teilsicherheitsbeiwerte für Einwirkungen und Beanspruchungen (Tabelle A2.1, DIN 1054)

| 10 |
|----|
| 00 |
| 00 |
| 10 |
|    |
| )( |

### Anwendungshinweise

- <sup>1</sup> Die Bemessungssituation hängt von den jeweiligen Nutzungsdauern ab. Temporäre Zustände werden i. Allg. in BS-T gefasst. Die permanenten Zustände in BS-P. Außerordentliche Bemessungssituationenen, wie z. B. Extremhochwasser, werden mit BS-A belegt.
- <sup>2</sup> Die Gefahr des Gleitens besteht entlang der Sohlfläche oder einer darunter befindlichen Schnittfläche im Baugrund, falls der Bemessungswert der parallel zu dieser Fläche angreifenden Kräfte T<sub>d</sub> in Verschiebungsrichtung größer als der Bemessungswert der widerstehenden Kräfte (R<sub>t,d</sub> und E<sub>pt,d</sub>) ist. (Schneider Bautabellen, S. 11.49)
- <sup>3</sup> Sofern der Sohlreibungswinkel  $\delta$  nicht eigens ermittelt wird, darf bei Ortbetonfundamenten anstelle des kritischen Reibungswinkels der charakteristische Reibungswinkel  $\varphi'_k$  angesetzt werden, jedoch darf ein Wert von 35° nicht überschritten werden. Dies gilt auch bei vorgefertigten Fundamenten, wenn die Fertigteile im Mörtelbett verlegt werden. Bei vorgefertigten glatten Fundamenten ohne Mörtelbett ist als charakteristischer Sohlreibungswinkel  $\delta_k$ =2/3 $\varphi'_k$  zu verwenden. (DIN1054)
- $^4$  Der Erddruckbeiwert für den Erdruhedruck ist mit K $_{0\mathrm{gh}}$ =1- $\sin \varphi$  anzusetzen (DIN4085)
- <sup>5</sup> Fall 1: Für den Bemessungswert des Gleitwiderstands ist die Formel  $R_d = V_{k'} * \tan(\delta_{S_k k})/\gamma_{R,h}$  anzuwenden. Fall 2: Bei in Gleitrichtung ansteigender Sohlfläche ist wie bei Fundamenten mit einem Sporn zusätzlich eine ausreichende Sicherheit gegen Gleiten in Bruchflächen nachzuweisen, die nicht in der Sohlfläche des Fundamentes, sondern durch den Boden verlaufen. Für die Berechnung des Bemessungswertes  $R_d$  des Gleitwiderstands ist dann die folgende Gleichung maßgebend:  $R_d = (V_k \hat{} * \tan(\varphi'_k) + A * c'_k)/\nabla_{R,h}^{N} \ 1054)$
- <sup>6</sup> Der Strömungsdruck (hydrodynamische Druck) entspricht dem Staudruck. Dieser wird nach der Formel p<sub>d</sub>=1/2\*φ\*v²\*h berechnet. Die Fließgeschwindigkeit v wird, falls nicht angegeben, über die Gleichung Q=A\*v ermittelt, wobei A aus h=Höhendifferenz des Wasserstandes und der Sohlhöhe im OW sowie der gesamten Wehrlänge resultiert. Beide Formeln sind händisch anzuwenden und der berechnete Strömungsdruck in das Tool einzutragen.

## Verwendete Literatur

DIN 1054 (2010): Baugrund - Sicherheitsnachweise im Erd- und Grundbau - Ergänzende Regelungen zu DIN EN 1997-1. Deutsches Institut für Normung (DIN), Berlin

DIN EN 1997-1 (2014): Eurocode 7 - Entwurf, Berechnung und Bemessung in der Geotechnik - Teil 1: Allgemeine Regeln. Deutsches Institut für Normung (DIN), Berlin

DIN 4085 (2017):Baugrund- Berechnung des Erddrucks. Deutsches Institut für Normung (DIN), Berlin

Schneider (2018): Bautabellen für Ingenieure. 23. Auflage, Köln: Bundesanzeiger Verlag